skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gebremedhin, Assefaw"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Application domains such as environmental health science, climate science, and geosciences—where the relationship between humans and the environment is studied—are constantly evolving and require innovative approaches in geospatial data analysis. Recent technological advancements have led to the proliferation of high-granularity geospatial data, enabling such domains but posing major challenges in managing vast datasets that have high spatiotemporal similarities. We introduce the Hierarchical Grid Partitioning (HierGP) framework to address this issue. Unlike conventional discrete global grid systems, HierGP dynamically adapts to the data’s inherent characteristics. At the core of our framework is the Map Point Reduction (MPR) algorithm, designed to aggregate and then collapse data points based on user-defined similarity criteria. This effectively reduces data volume while preserving essential information. The reduction process is particularly effective in handling environmental data from extensive geographical regions. We structure the data into a multilevel hierarchy from which a reduced representative dataset can be extracted. We compare the performance of HierGP against several state-of-the-art geospatial indexing algorithms and demonstrate that HierGP outperforms the existing approaches in terms of runtime, memory footprint, and scalability. We illustrate the benefits of the HierGP approach using two representative applications: analysis of over 289 million location samples from a registry of participants and efficient extraction of environmental data from large polygons. While the application demonstration in this work has focused on environmental health, the methodology of the HierGP framework can be extended to explore diverse geospatial analytics domains. 
    more » « less
  2. Label Propagation is not only a well-known machine learning algorithm for classification, but it is also an effective method for discovering communities and connected components in networks. We propose a new Direction-Optimizing Label Propagation Algorithm (DOLPA) framework that enhances the performance of the standard Label Propagation Algorithm (LPA), increases its scalability, and extends its versatility and application scope. As a central feature, the DOLPA framework relies on the use of frontiers and alternates between label push and label pull operations to attain high performance. It is formulated in such a way that the same basic algorithm can be used for finding communities or connected components in graphs by only changing the objective function used. Additionally, DOLPA has parameters for tuning the processing order of vertices in a graph to reduce the number of edges visited and improve the quality of solution obtained. We present the design and implementation of the enhanced algorithm as well as our shared-memory parallelization of it using OpenMP. We also present an extensive experimental evaluation of our implementations using the LFR benchmark and real-world networks drawn from various domains. Compared with an implementation of LPA for community detection available in a widely used network analysis software, we achieve at most five times the F-Score while maintaining similar runtime for graphs with overlapping communities. We also compare DOLPA against an implementation of the Louvain method for community detection using the same LFR-graphs and show that DOLPA achieves about three times the F-Score at just 10% of the runtime. For connected component decomposition, our algorithm achieves orders of magnitude speedups over the basic LP-based algorithm on large diameter graphs, up to 13.2 × speedup over the Shiloach-Vishkin algorithm, and up to 1.6 × speedup over Afforest on an Intel Xeon processor using 40 threads. 
    more » « less